We have that:
[tex]\sin (x)=-\frac{3}{5}[/tex]And with this information, we need to find the value of cos(2x).
To do this we use the following formula that relates sinx and cos(2x):
[tex]\cos (2x)=1-2\sin ^2x[/tex]Substituting the value of sin(x):
[tex]\cos 2x=1-2(-\frac{3}{5})^2[/tex]Now we need to solve the operations. We squared (-3/5) and we get (9/25):
[tex]\cos (2x)=1-2(\frac{9}{25})[/tex]Next, we multiply 2 by (9/25) and get 18/25 instead:
[tex]\cos (2x)=1-\frac{18}{25}[/tex]And finally, to make this substraction we consider 1=25/25
[tex]\begin{gathered} \cos (2x)=\frac{25}{25}-\frac{18}{25} \\ \cos (2x)=\frac{7}{25} \end{gathered}[/tex]But, since we are considering that cos(x)<0 (is negative), then cos(2x) must also be negative, so the answer is:
[tex]-\frac{7}{25}[/tex]