suppose A is in quadrant 2 and B is in Quadrant 2

Solution:
Given that:
[tex]\cos(A)=-\frac{9}{41},\text{ }\sin(B)=\frac{63}{65}[/tex]To evaluate sin (A+B) and sin (A-B),
Step 1: Express the compound angle formula.
According to the compound angle formula,
[tex]\begin{gathered} \sin(A+B)=\sin(A)\cos(B)+\sin(B)\cos(A) \\ \sin(A-B)=\sin(A)\cos(B)-\sin(B)\cos(A) \end{gathered}[/tex]Step 2: Evaluate cos (B) and sin (A).
According to the Pythagorean identities,
[tex]\cos^2\theta+sin^2\theta=1[/tex]Thus,
[tex]\begin{gathered} \sin^(A)=\sqrt{1-\cos^2A}\text{ =}\sqrt{1-(-\frac{9}{41})^2} \\ =\sqrt{1-\frac{81}{1681}} \\ =\sqrt{\frac{1600}{1681}} \\ \Rightarrow\sin^(A)=\frac{40}{41} \end{gathered}[/tex]Similarly,
[tex]\begin{gathered} \cos(B)=\sqrt{1-\sin^2B}\text{ =}\sqrt{1-(\frac{63}{65})^2} \\ =\sqrt{1-\frac{3969}{4225}} \\ =\sqrt{\frac{256}{4225}} \\ \Rightarrow\cos(B)=-\frac{16}{65}\text{ \lparen second quadrant\rparen} \end{gathered}[/tex]Step 3: Evaluate sin (A+B).
Recall,
[tex]\begin{gathered} \sin(A+B)=\sin(A)\cos(B)+\sin(B)\cos(A) \\ =(\frac{40}{41}\times-\frac{16}{65})+(\frac{63}{65}\times-\frac{9}{41}) \\ =-\frac{1207}{2665} \end{gathered}[/tex]Step 4: Evaluate sin(A-B).
Recall,
[tex]\begin{gathered} \sin(A-B)=\sin(A)\cos(B)-\sin(B)\cos(A) \\ =(\frac{40}{41}\times-\frac{16}{65})-(\frac{63}{65}\times-\frac{9}{41}) \\ =-\frac{73}{2665} \end{gathered}[/tex]Hence, we have
[tex]undefined[/tex]