Given:
The magnitude of the electric field is: E = 19.59 N/C
The distance at which the electric field is measured is: r = 9.52 m
To find:
The magnitude of the charge.
Explanation:
The expression for the electric field intensity E is given as:
[tex]E=k\frac{q}{r^2}[/tex]Here, k = 4πε₀ ≈ 8.99 × 10⁹ N.m²/C², q = the magnitude of the charge.
Rearranging the above equation, we get:
[tex]q=\frac{Er^2}{k}[/tex]Substituting the values in the above equation, we get:
[tex]\begin{gathered} q=\frac{19.59\text{ N/C}\times\text{ \lparen}9.52\text{ m\rparen}^2}{8.99\times10^9\text{ N.m}^2\text{/C}^2} \\ \\ q=\frac{19.59\text{ N/C}\times90.6304\text{ m}^2}{8.99\times10^9\text{ N.m}^2\text{/C}^2} \\ \\ q=1.975\times10^{-7}\text{ C} \\ \\ q=0.1975\text{ }\times10^{-6}\text{ C} \\ \\ q\approx0.1975\text{ }\mu\text{C} \end{gathered}[/tex]Final answer:
The magnitude of the charge is 0.1975 microCoulombs.