Respuesta :
We have the function that relates x and y expressed as:
[tex]y=0.2x^2-0.4x-0.6[/tex]a) We have to find the x-intercepts.
To do that we can use the quadratic equation:
[tex]\begin{gathered} x=\frac{-(-0.4)\pm\sqrt{(-0.4)^2-4(0.2)(-0.6)}}{2(0.2)} \\ x=\frac{0.4\pm\sqrt{0.16+0.48}}{0.4} \\ x=\frac{0.4\pm\sqrt{0.64}}{0.4} \\ x=\frac{0.4\pm0.8}{0.4} \\ x=1\pm2 \\ x_1=1-2=-1 \\ x_2=1+2=3 \end{gathered}[/tex]Then, we have x-intercepts at x = -1 and x = 3.
b) We have to find the vertex.
We can find the x-coordinate of the vertex using the linear coefficient b = -0.4 and the quadratic coefficient a = 0.2:
[tex]x_v=\frac{-b}{2a}=\frac{-(-0.4)}{2(0.2)}=\frac{0.4}{0.4}=1[/tex]It can also be calculated as the average of the x-intercepts.
Knowing the x-coordinate of the vertex, we can find the y-coordinate of teh vertex using the formula applied to x = 1:
[tex]y=0.2(1)^2-0.4(1)-0.6=0.2-0.4-0.6=-0.8[/tex]Then, the vertex is (1, -0.8).
c) The minimum height will be given by the y-coordinate of the vertex.
Relative to the horizontal axis (y = 0), the minimum height will be -0.8 meters below that level.
Answer:
a) The x-intercepts are x = -1 and x = 3.
b) The vertex is (1,-0.8)
c) The minimum height is 0.8 units below the horizontal axis.
