Solution:
The maximum height, d, in feet is modeled by;
[tex]d(t)=-16t^2+400t[/tex]
At maximum height,
[tex]\begin{gathered} d^{\prime}(t)=(-16\times2)t^{2-1}+(400\times1)t^{1-1}=0 \\ \\ d^{\prime}(t)=-32t+400=0 \end{gathered}[/tex]
Then, we would solve for t at maximum height;
[tex]\begin{gathered} -32t+400=0 \\ \\ 32t=400 \\ \\ t=\frac{400}{32} \\ \\ t=12.5 \end{gathered}[/tex]
Thus, the maximum height is;
[tex]\begin{gathered} d(12.5)=-16(12.5)^2+400(12.5) \\ \\ d(12.5)=2500 \end{gathered}[/tex]
CORRECT OPTION: The maximum height is 2,500 feet at 12.5 seconds.