Solve the compound d Inequalities, graph the solutions and write the solutions in interval notation. I have (-infinity,-2) U (2, infinity)

Given:
[tex]3x-1>5\text{ or }\frac{x}{2}-4<-5[/tex]To find the solutions for this compound inequality, we will first need to solve for x.
[tex]3x-1>5[/tex][tex]3x>5+1[/tex][tex]3x>6[/tex][tex]x>2[/tex]Since x > 2, this would give us an interval notation of ( 2, ∞ )
[tex]\frac{x}{2}-4<-5[/tex][tex]\frac{x}{2}<-5+4[/tex][tex]\frac{x}{2}<-1[/tex][tex]x<-1(2)[/tex][tex]x<-2[/tex]Now, since x < -2, this will give us an interval notation of ( -∞, -2 )
Since we see the word OR in our compound inequality, this would mean that the solution for this is ( -∞, -2 ) ∪ ( 2, ∞ )