Given that the ball's height (in feet) after seconds is given by the following equation:
[tex]h=164-12t-16t^2[/tex]
You can determine that when the ball hits the ground:
[tex]h=0[/tex]
Then, you can substitute that value into the equation:
[tex]0=164-12t-16t^2[/tex]
In order to find the values of "t", you can follow these steps:
1. Rewrite it in the form:
[tex]ax^2+bx+c=0[/tex]
Then:
[tex]-16t^2-12t+164=0[/tex]
2. Use the Quadratic Formula:
[tex]t=\frac{-b\pm\sqrt{b^2-4ac}}{2a}[/tex]
In this case:
[tex]\begin{gathered} a=-16 \\ b=-12 \\ c=164 \end{gathered}[/tex]
Therefore, you can substitute values into the formula and evaluate:
[tex]t=\frac{-(-12)\pm\sqrt{(-12)^2-4(-16)(164)}}{2(-16)}[/tex][tex]t_1=\frac{12+\sqrt{10640}}{-32}\approx-3.60[/tex][tex]t_2=\frac{12-\sqrt{10640}}{-32}\approx2.85[/tex]
Choose the positive value:
[tex]t\approx2.85[/tex]
Hence, the answer is:
[tex]t\approx2.85\text{ }seconds[/tex]