Solution:
The given dimensions are
[tex]\begin{gathered} r=18cm \\ C=131.1cm \end{gathered}[/tex]
Step 1:
We will calculate the angle of the sector
To do this, we will use the formula below
[tex]A=\frac{\theta}{360}\times\pi R^2[/tex]
By substituting the values, we will have
[tex]\begin{gathered} R^2=18^2+24^2 \\ R^2=324+576 \\ R^2=900 \\ R=\sqrt{900} \\ R=30 \end{gathered}[/tex][tex]\begin{gathered} \theta=\frac{C}{R}=\frac{113.1}{30} \\ A=\frac{\theta}{2\pi}\times\pi R^2 \\ A=\frac{113.1}{\frac{30}{2}}\times30^2 \\ A=\frac{113.1}{60}\times900 \\ A=1696.5cm^2 \end{gathered}[/tex]
Hence,
The final answer is
[tex]\Rightarrow A=1,696.5cm^2[/tex]