Using the formula to find the Z-score of the distribu,
[tex]\begin{gathered} Z=\frac{x-\mu}{\sigma} \\ \text{where x = 0.417g} \\ \mu=0.939g \\ \sigma=0.307g \\ \text{Substituting all these given data in the formula, we have;} \\ Z=\frac{0.417-0.939}{0.307} \\ Z=\frac{-0.522}{0.307} \\ Z=-1.7003 \\ Z=-1.700 \end{gathered}[/tex]The probability of selecting 0.417g of nicotine or less will therefore be;
[tex]\begin{gathered} P(x\leq Z)=P(x\leq-1.7) \\ \text{From Z-score table, P(x}\leq-1.7)\text{ = 0.044565} \\ P(x\leq Z)=0.0446 \end{gathered}[/tex]Therefore, the probability of selecting 0.417g of nicotine or less to 4 decimal places is 0.0446