We can apply the ideal gas law which tells us the following:
[tex]PV=nR_{}T[/tex]Where,
P is the pressure = 1atm (STP)
T is the temperature = 273.15K (STP)
R is the ideal gas constant = 0.08206 (atm L)/(mol K)
n is the number of moles
V is the volume in L
So, we have to calculate first the number of moles. We will use the molar mass of H2.
Molar mass of H2 = 2.01568 g/mol
[tex]\begin{gathered} \text{Mol of H}_2=Mass\text{ of H}_2\div Molar\text{ mass} \\ \text{Mol of H}_2=4374.4\text{ g}\div2.01568\frac{g}{mol} \\ \text{Mol of H}_2=2170.2\text{ mol of H}_2 \end{gathered}[/tex]Now, we replace the know values in ideal gas law:
[tex]\begin{gathered} PV=nR_{}T \\ We\text{ clear V} \\ V=\frac{nR_{}T}{P} \\ V=\frac{2170.2\text{mol}\times0.08206\frac{atm\mathrm{}L}{\text{mol}\mathrm{}K}\times273.15K}{1\text{ atm}} \\ V=48644.0\text{ L} \\ \end{gathered}[/tex]So, 4374.4 grams of H2 gas are equal to 48644.0 L