The total surface area of the prism is the sum of the areas of the bases and the areas of the lateral sides:
[tex]S=2\cdot A_b+A_l[/tex]The area of the base corresponds to the area of an equilateral triangle:
[tex]A_b=\frac{\sqrt[]{3}}{4}\cdot L^2[/tex]Where L is the length of the edge base. Calculating:
[tex]\begin{gathered} A_b=\frac{\sqrt[]{3}}{4}\cdot6^2 \\ A_b=\frac{\sqrt[]{3}}{4}\cdot36 \\ A_b=9\text{ }\sqrt[]{3} \end{gathered}[/tex]The lateral surface is:
Al = Base perimeter * Height
The base perimeter is the sum of its side lengths:
P = L + L + L = 18
Since the height is H = 10:
[tex]\begin{gathered} A_l=18\cdot10 \\ A_l=180 \end{gathered}[/tex]The total area is:
[tex]\begin{gathered} S=2\cdot9\text{ }\sqrt[]{3}+180 \\ \boxed{S=18\text{ }\sqrt[]{3}+180} \end{gathered}[/tex]