Suppose that $15,000 is deposited for five years at 3% APR. Calculate the interest earned if interest is compounded semiannually. Round your answer to the nearest cent.

Respuesta :

Step 1

State the formula for compound interest

[tex]A=P(1+\frac{r}{n})^{nt}[/tex]

where;

[tex]\begin{gathered} P=15000 \\ r=\frac{3}{100}=0.03 \\ n=2 \\ t=5 \end{gathered}[/tex]

Step 2

Find the interest earned if the interest is compounded semiannually.

[tex]\begin{gathered} A=15000(1+\frac{0.03}{2})^{2\times5} \\ A=15000(1.015)^{10} \\ A=15000(1.160540825) \\ A=\text{ \$}17408.11238\text{ } \end{gathered}[/tex]

The Amount(A)=Interest(I) +Principal(P)

Therefore;

[tex]\begin{gathered} 17408.11238=I\text{ +15000} \\ I=\text{ \$}2408.112375 \\ I=\text{ \$2408.11} \end{gathered}[/tex]

Answer; Interest=$2408.11

ACCESS MORE
EDU ACCESS
Universidad de Mexico