Standard form of a function is
[tex]a\sin (bx+c)\pm d[/tex][tex]y=\sin (\frac{\pi}{6}x+\pi)-3[/tex]So by comparing the given equation to the standard form, we get
a=1, b=pi/6, c=pi, d=3
amplitude can be written as mod a or
[tex]\lvert a\rvert=\lvert1\rvert=1[/tex]So the amplitude is 1
Now for the period, we use generalization as
[tex]\frac{2\pi}{\lvert b\rvert}\text{radians}[/tex][tex]=\frac{2\pi}{\lvert\frac{\pi}{6}\rvert}=\frac{2\pi}{\frac{\pi}{6}}=2\times6\times\frac{\pi}{\pi}=12[/tex]So the period is 12
Here, c is the phase shift, so c=pi
Hence phase shift is pi
Midline is the line that runs between maximum and minimum values
Since, the amplitude is 1 and the phase shift is -pi, the minimum and maximum values are
[tex]\min =\text{ 1-}\pi\text{ }=1-\pi_{}[/tex][tex]\max =1+\pi[/tex]Midline will be the centre of region (1+pi, 1-pi)
So the midline will be
[tex]\frac{1+\pi-(1-\pi)}{2}=\frac{2\pi}{2}=\pi[/tex]