Width=10 ft
Lenth=14 ft
Explanation
Step 1
Let
length(L)
Width(W)
The length of a rectangle is six feet less than twice the width,it is
[tex]\begin{gathered} L=2W\text{ -6 Equation(1)} \\ \end{gathered}[/tex]Also, the perimeter of the rectangle is 48,the perimeter is given by:
[tex]\begin{gathered} \text{Perimeter}=2L+2W \\ 48=2L+2W\text{ Equation(2)} \end{gathered}[/tex]Step 2
using equation (1) and (2), find L and W
a)
replace equation (1) in equation (2)
[tex]\begin{gathered} 48=2L+2W \\ 48=2(2W-6)+2W \\ 48=4W-12+2W \\ 48=6W-12 \\ 6W=60 \\ W=10\text{ ft} \end{gathered}[/tex]b) replace the value fo W in equation (1) to find L
[tex]\begin{gathered} L=2W\text{ -6} \\ L=2\cdot10\text{ -6} \\ L=20-6 \\ L=14 \end{gathered}[/tex]I hope this helps you