To solve this problem it is necessary to simplify the expression.
Step 1. Write the equation as a sum of homogeneous fractions:
[tex]\frac{21c^{10}d^3+56c^6d^2-7c^2d}{7c^2d}=\frac{21c^{10}d^3}{7c^2d}+\frac{56c^6d^2}{7c^2d}-\frac{7c^2d}{7c^2d}[/tex]Step 2. Simplify the obtained expressions:
[tex]\begin{gathered} \frac{21c^{10}d^3}{7c^2d}=3c^8d^2 \\ \frac{56c^6d^2}{7c^2d}=8c^4d \\ \frac{7c^2d}{7c^2d}=1 \end{gathered}[/tex]Step 3. Rewrite the expression using the simplified terms:
[tex]3c^8d^2+8c^4d-1[/tex]