Answer:
The discriminant is greater than 0, so there are two real roots.
Step-by-step explanation:
[tex]\boxed{\begin{minipage}{6.2 cm}\underline{Discriminant}\\\\$b^2-4ac$ \quad when $ax^2+bx+c=0$\\\\If $b^2-4ac > 0 \implies$ two real roots\\If $b^2-4ac=0 \implies$ one real root\\If $b^2-4ac < 0 \implies$ no real roots\\\end{minipage}}[/tex]
Given equation:
[tex]2x^2-9x+2=-1[/tex]
Add 1 to both sides of the equation so that the equation equals zero:
[tex]\implies 2x^2-9x+2+1=-1+1[/tex]
[tex]\implies 2x^2-9x+3=0[/tex]
Compare the equation with ax²+bx+c=0:
Substitute the values of a, b and c into the discriminant formula and solve:
[tex]\begin{aligned}\implies b^2-4ac&=(-9)^2-4(2)(3)\\&=81-4(2)(3)\\&=81-8(3)\\&=81-24\\&=57\end{aligned}[/tex]
As 57 > 0, the discriminant is greater than zero, so there are two real roots.