In this problem
we have an exponential growth function of the form
[tex]y=a(1+r)^{\frac{t}{2}}[/tex]where
r=10%=0.10
Let
t=0 ---------> 12 years ago
so
Presently -------> t=12 years, y=80,000 bacteria
substitute
[tex]\begin{gathered} 80,000=a(1+0.10)^{\frac{12}{2}} \\ a=\frac{80,000}{1.10^6} \\ \\ a=45,158\text{ bacteria} \end{gathered}[/tex]therefore