Respuesta :

To solve for the angles in a parallel line:

For a pair of parallel lines:

Corresponding Angles are equal m<1 = m<5 = 143°

Alternate Interior Angles are equal m<4 = m<6

Alternate Exterior Angles are equal m<2 = m<8

Consecutive Interior Angles add up to 180° m<3 + m<6 = 180

... then the lines are Parallel

[tex]\begin{gathered} m<5+m<6=180 \\ 143+m<6=180 \\ m<6=180-143 \\ m<6=37^0 \end{gathered}[/tex]

Therefore the consecutive interior angles add up to 180

[tex]\begin{gathered} m<3+m<6=180 \\ m<3+37=180 \\ m<3=180-37 \\ m<3=143^0 \end{gathered}[/tex]

Therefore the consecutive interior angles add up to 180

[tex]\begin{gathered} m<3+m<2=180 \\ 143+m<2=180 \\ m<2=180-143 \\ m<2=37^0 \end{gathered}[/tex]

Hence the corresponding angle for m<3 = 143° and m<2 = 37°

Ver imagen CielleC169548
ACCESS MORE