Respuesta :

Answer:
It is called a constant function :)
not sure if this is what ur looking for but I hope it helps!

Answer:

[tex]g(x)=|x-2|+10[/tex]

Step-by-step explanation:

Translations

[tex]f(x+a) \implies f(x) \: \textsf{translated $a$ units left}[/tex]

[tex]f(x-a) \implies f(x) \: \textsf{translated $a$ units right}[/tex]

[tex]f(x)+a \implies f(x) \: \textsf{translated $a$ units up}[/tex]

[tex]f(x)-a \implies f(x) \: \textsf{translated $a$ units down}[/tex]

Given absolute value function:

[tex]f(x)=|x|[/tex]

To translate the given function 2 units to the right, subtract 2 from the x-value:

[tex]\implies f(x-2)=|x-2|[/tex]

Then to translate the given function 10 units up, add 10 to the function:

[tex]\implies f(x-2)+10=|x-2|+10[/tex]

Therefore, the function that translates the function f(x) = |x| to the right 2 units and up 10 units is:

[tex]\large\boxed{g(x)=|x-2|+10}[/tex]