Respuesta :
Answer:
- $41771.09
Step-by-step explanation:
Given
- Time t = 8 years,
- Interest rate r = 2.25% = 0.0225,
- Number of compounds n = 12 per year,
- Final amount F = $50000.
To find
- Amount of deposit P = ?
Solution
Use the compound equation:
- [tex]F=P(1+r/n)^{nt}[/tex]
Plug in the values and solve for P:
- [tex]50000=P(1+0.0225/12)^{8*12}[/tex]
- [tex]50000=P(1+0.0225/12)^{96}[/tex]
- [tex]50000=1.197P[/tex]
- [tex]P=50000/1.197[/tex]
- [tex]P=41771.09[/tex]
Answer:
$41,770.55
Step-by-step explanation:
Compound Interest Formula
[tex]\large \text{$ \sf A=P\left(1+\frac{r}{n}\right)^{nt} $}[/tex]
where:
- A = Final amount.
- P = Principal amount.
- r = Interest rate (in decimal form).
- n = Number of times interest is applied per year.
- t = Time (in years).
Given values:
- A = $50,000
- r = 2.25% = 0.0225
- n = 12 (monthly)
- t = 8 years
Substitute the given values into the formula and solve for P:
[tex]\implies \sf 50000=P\left(1+\frac{0.0225}{12}\right)^{12 \cdot 8}[/tex]
[tex]\implies \sf 50000=P\left(1+0.001875}\right)^{96}[/tex]
[tex]\implies \sf 50000=P\left(1.001875}\right)^{96}[/tex]
[tex]\implies \sf P=\dfrac{50000}{\left(1.001875}\right)^{96}}[/tex]
[tex]\implies \sf P=\dfrac{50000}{1.19701560...}[/tex]
[tex]\implies \sf P=41770.55[/tex]
Therefore, Matilda should deposit $41,770.55.