Answer:
Approximately [tex]2.2\; {\rm m\cdot s^{-2}}[/tex].
Explanation:
Acceleration is the rate at which velocity changes.
In this example, velocity has changed from [tex]v_{0} = 0\; {\rm m\cdot s^{-1}}[/tex] to [tex]v_{1} = 27\; {\rm m\cdot s^{-1}}[/tex]. The total change in velocity is:
[tex]\begin{aligned}\Delta v &= v_{1} - v_{0} \\ &= 27\; {\rm m\cdot s^{-1}} - 0\; {\rm m\cdot s^{-1}} \\ &= 27\; {\rm m\cdot s^{-1}} \end{aligned}[/tex].
This change happened over a period of [tex]\Delta t = 6.00\; {\rm s}[/tex]. Therefore:
[tex]\begin{aligned} & (\text{avg. acceleration}) \\ =\; & (\text{avg. rate of change in velocity}) \\ =\; & \frac{(\text{change in velocity})}{(\text{time required})}\\ =\; & \frac{\Delta v}{\Delta t} \\ \approx\; & \frac{27\; {\rm m\cdot s^{-1}}}{6.00\; {\rm s}} \\ \approx \; & 2.2\; {\rm m\cdot s^{-2}} \end{aligned}[/tex].