Answer:
[tex]\textsf{B)} \quad -8 \frac{4}{7} \quad -8.\.{2} \quad \dfrac{25}{3} \quad \sqrt{70}[/tex]
Step-by-step explanation:
Given:
[tex]\sqrt{70} \quad -8.\.{2} \quad \dfrac{25}{3} \quad -8 \frac{4}{7}[/tex]
Convert the given numbers into decimals:
[tex]\sqrt{70}=8.366...[/tex]
[tex]-8.\.{2} =-8.222...[/tex]
[tex]\dfrac{25}{3}=8.333...[/tex]
[tex]-8 \frac{4}{7}=-8.571...[/tex]
Order the decimals from least to greatest:
[tex]-8.571... < -8.222... < 8.333... < 8.366...[/tex]
Therefore:
[tex]-8 \frac{4}{7} < -8.\.{2} < \dfrac{25}{3} < \sqrt{70}[/tex]