50 points plus brainliest please help
![50 points plus brainliest please help class=](https://us-static.z-dn.net/files/d9d/4cf9d2c609573dedf300d08fe880434c.png)
Answer:
Step-by-step explanation:
from the sign it's a right angle, so 90°
90 = x - 8 + 6x
90 + 8 = 7x
98 = 7x
x = 98 : 7
x = 14
------------------
check
90 = 14 - 8 + 6 * 14 (remember pemdas)
90 = 14 - 8 + 84
90 = 90
the answer is good
Find angle 1
x - 8
14 - 8 =
6°
Find angle 2
6x
6 * 14 = 84°
--------------------
check
84 + 6 = 90°
the answer is good
Answer:
[tex]\textsf{a)} \quad \textsf{Equation}: \quad \boxed{x-8+6x=90}[/tex]
[tex]\begin{aligned}\textsf{b)} \quad m \angle 1 & =\boxed{6^{\circ}}\\ m \angle 2 & =\boxed{84^{\circ}}\end{aligned}[/tex]
Step-by-step explanation:
From inspection of the given diagram, the sum of the two angles is 90° (indicated by the right angle sign):
[tex]\implies m \angle 1+m \angle 2=90^{\circ}[/tex]
[tex]\implies (x - 8)^{\circ} + (6x)^{\circ} = 90^{\circ}[/tex]
[tex]\implies x-8+6x=90[/tex]
[tex]\textsf{Equation}: \quad \boxed{x-8+6x=90}[/tex]
To find the measure of each angle, solve the equation for x:
[tex]\implies x-8+6x=90[/tex]
[tex]\implies x+6x-8=90[/tex]
[tex]\implies 7x-8=90[/tex]
[tex]\implies 7x-8+8=90+8[/tex]
[tex]\implies 7x=98[/tex]
[tex]\implies \dfrac{7x}{7}=\dfrac{98}{7}[/tex]
[tex]\implies x=14[/tex]
Substitute the found value of x into the expression for each angle:
[tex]\implies m \angle 1=(x-8)^{\circ}[/tex]
[tex]\implies m \angle 1=(14-8)^{\circ}[/tex]
[tex]\implies m \angle 1=\boxed{6^{\circ}}[/tex]
[tex]\implies m \angle 2=(6x)^{\circ}[/tex]
[tex]\implies m \angle 2=(6 \cdot 14)^{\circ}[/tex]
[tex]\implies m \angle 2=\boxed{84^{\circ}}[/tex]