If:
JL = 26,
KL=3x + 7, and
JK = 8x + 8,
Find KL.
J
K
L
![If JL 26 KL3x 7 and JK 8x 8 Find KL J K L class=](https://us-static.z-dn.net/files/df9/956fc826063789dcc25d4050dfebd8c9.png)
Answer:
KL = 10
Step-by-step explanation:
Given:
[tex]JL=26[/tex]
[tex]KL=3x+7[/tex]
[tex]JK=8x+8[/tex]
From inspection of the given diagram:
[tex]JK+KL=JL[/tex]
Substitute the given values into the found equation and solve for x:
[tex]\implies 8x+8+3x+7=26[/tex]
[tex]\implies 11x+15=26[/tex]
[tex]\implies 11x+15-15=26-15[/tex]
[tex]\implies 11x=11[/tex]
[tex]\implies \dfrac{11x}{11}=\dfrac{11}{11}[/tex]
[tex]\implies x=1[/tex]
Substitute the found value of x into the expression for KL:
[tex]\implies KL=3(1)+7[/tex]
[tex]\implies KL=3+7[/tex]
[tex]\implies KL=10[/tex]
Formula we use,
→ JK + KL = JL
Now the value of x will be,
→ (8x + 8) + (3x + 7) = 26
→ 11x + 15 = 26
→ 11x = 26 - 15
→ x = 11/11
→ [ x = 1 ]
Then the value of KL will be,
→ 3x + 7
→ (3 × 1) + 7
→ 3 + 7 = 10
Hence, the value of KL is 10.