tommy do this instead then
![tommy do this instead then class=](https://us-static.z-dn.net/files/d88/216863dd385e182367791554613bb93c.png)
Answer: (2) 1010025
Step-by-step explanation:
Let's find the sum of 1+3+5+7+...+2007+2009
Let's use the formulas for an arithmetic progression:
[tex]a_1=1\ \ \ a+2=3\\d=a_2-a_1\\d=3-1\\d=2[/tex]
[tex]a_1 =1\ \ \ \ a_n=2009\\a_n=a_1+(n-1)d\\\Rightarrow\ 2009=1+(n-1)2\\\Rightarrow \ 2009=1+2n-2\\\Rightarrow\ 2009=-1+2n\\\Rightarrow\ 2010=2n\\[/tex]
Divide both parts of the equation by 2:
[tex]1005=n[/tex]
Hence,
[tex]\displaystyle\\S=\frac{a_1+a_n}{2} n\\\\S=\frac{1+2009}{2}1005\\\\S=\frac{2010}{2} 1005\\\\S=1005*1005\\\\S=1010025[/tex]