Answer:
[tex](3/4)[/tex] and [tex](2/3)[/tex].
Step-by-step explanation:
For a fraction of the form [tex](p / q)[/tex], the number in front of the division ([tex]p[/tex]) is the numerator. The number after the division ([tex]q[/tex]) is the denominator.
[tex]\begin{aligned} \frac{p}{q} \quad \genfrac{}{}{0}{}{(\text{numerator})}{(\text{denominator})}\end{aligned}[/tex].
A positive fraction [tex](p/q)[/tex] ([tex]p,\, q > 0[/tex]) is less than [tex]1[/tex] as long as the numerator [tex]p[/tex] is smaller than the denominator [tex]q[/tex] (that is, [tex]p < q[/tex].) The reason is that as long as [tex]p,\, q > 0[/tex]:
[tex]\begin{aligned} & \frac{p}{q} < 1 \\ \iff & (q)\, \left(\frac{p}{q}\right) < (q)\, (1) && (\text{given that $q > 0$}) \\ \iff & p < q\end{aligned}[/tex].
For example, in the fraction [tex](2/3)[/tex], [tex]2[/tex] is the numerator while [tex]3[/tex] is the denominator. Both the numerator and the denominator are positive, while the numerator [tex]2\![/tex] is smaller than the denominator [tex]3\![/tex]. Therefore, [tex](2/3)[/tex] would be less than [tex]1[/tex].