Respuesta :
[tex]{ \qquad\qquad\huge\underline{{\sf Answer}}} [/tex]
Here we go ~
- [tex]{\sf {V}_{w} } [/tex]= velocity of wind = 3 m/s (south)
- [tex]{\sf {V}_{r} } [/tex]= velocity of runner = 4 m/s (west)
So,
- [tex]{\sf {V}_{w} } [/tex] = - 3 [tex]{ \sf \hat{j}} [/tex]
[ taking unit vector along north be [tex]{ \sf \hat{j}} [/tex] ]
- [tex]{\sf {V}_{r} } [/tex] = - 4 [tex]{ \sf \hat{i}} [/tex]
[ taking unit vector along west be [tex]{ \sf \hat{i}} [/tex] ]
[tex] \qquad \dashrightarrow\sf \: V_{wr}= V_{w} - V_{r }[/tex]
[ where [tex]{ \sf V_{wr}= } [/tex] Relative velocity of wind with respect to runner ]
[tex] \qquad \dashrightarrow\sf \: V_{wr}= - 3 \hat{ j} - ( - 4 \hat{i})[/tex]
[tex] \qquad \dashrightarrow\sf \: V_{wr}= - 3 \hat{ j} + 4 \hat{i}[/tex]
That is : 3 m/s towards south and 4 m/s towards east.
So, it makes an angle of 37° with south, and 53° with East.
[ The resultant is depicted by yellow arrow in attachment ]
Magnitude :
[tex] \qquad \dashrightarrow\sf \: |V_{wr} | = \sqrt{3 {}^{2} + 4 {}^{2} }[/tex]
[tex] \qquad \dashrightarrow\sf \: |V_{wr} | = \sqrt{9 + 16 }[/tex]
[tex] \qquad \dashrightarrow\sf \: |V_{wr} | = \sqrt{25 }[/tex]
[tex] \qquad \dashrightarrow\sf \: |V_{wr} | = 5 \: \: m/s[/tex]
Direction :
[tex] \dashrightarrow \sf \tan( \alpha) = \dfrac{b\: \sin \theta}{b + a \sin( \theta) } [/tex]
[tex]{\sf \theta }[/tex] = angle between the two vectors ( along east and south) i.e 90°
- b = 4 units
[tex] \dashrightarrow \sf \tan( \alpha) = \dfrac{4\: \sin (90 \degree)}{3+ 4 \cos( 90 \degree) } [/tex]
[tex] \dashrightarrow \sf \tan( \alpha) = \dfrac{4 \times 1}{3+( 4 \times 0)} [/tex]
[tex] \dashrightarrow \sf \tan( \alpha) = \dfrac{4}{3} [/tex]
[tex] \dashrightarrow \sf \alpha = \tan {}^{ - 1} \bigg( \dfrac{4}{3 } \bigg)[/tex]
[tex] \dashrightarrow \sf \alpha = 53 \degree[/tex]
So, it's direction is 53° east from south ~
![Ver imagen DᴀʀᴋPᴀʀᴀᴅᴏx](https://us-static.z-dn.net/files/ddb/c2cd899166c56b3f7f0cab4d1902dfc0.jpg)