kbac98
contestada

The region [tex]R[/tex] is bounded by the lines [tex]x=2[/tex], [tex]x=3[/tex], [tex]y=-1[/tex], and the curve [tex]y=\frac{1}{2+x^3}[/tex]. Suppose a solid is formed by revolving [tex]R[/tex] about an axis. Use the disk/washer method to set up the integral (or expression involving sums of integrals) giving the volume of the solid formed when [tex]R[/tex] is revolved about [tex]x=-5[/tex].

Respuesta :

The curve intersects the vertical lines when

[tex]x=2 \implies y = \dfrac1{2+2^3} = \dfrac1{10}[/tex]

and

[tex]x=3 \implies y = \dfrac1{2+3^3} = \dfrac1{29}[/tex]

Split up the region into washers of thickness [tex]\Delta y[/tex].

For [tex]-1\le y\le\frac1{29}[/tex], the inner and outer radii of each washer will be constant, with outer radius [tex]x=3[/tex] and inner radius [tex]x=2[/tex]. Each washer in this interval will contribute a total volume of

[tex]\pi (3^2 - 2^2) \Delta y = 5\pi\,\Delta y[/tex]

For [tex]\frac1{29} \le y \le \frac1{10}[/tex], the washers will have a varying outer radius of length

[tex]y=\dfrac1{2+x^3} \implies x = \sqrt[3]{\dfrac1y - 2}[/tex]

and inner radius [tex]x=2[/tex]. Their volumes are

[tex]\pi \left(\left(\sqrt[3]{\dfrac1y - 2}\right)^2 - 2^2\right) \, \Delta y = \pi \left(\left(\dfrac1y - 2\right)^{2/3} - 4\right) \, \Delta y[/tex]

Let [tex]\Delta y\to0[/tex]. Then as the number of washers goes to infinity, the total volume of the solid converges to the definite integral

[tex]\displaystyle 5\pi \int_{-1}^{1/29} dy + \pi \int_{1/29}^{1/10} \left(\left(\dfrac1y - 2\right)^{2/3} - 4\right) \, dy[/tex]

The first integral is trivial, but the second one requires hypergeometric functions to evaluate exactly. With a calculator, we find the approximate volume to be 0.117884.