The curve intersects the vertical lines when
[tex]x=2 \implies y = \dfrac1{2+2^3} = \dfrac1{10}[/tex]
and
[tex]x=3 \implies y = \dfrac1{2+3^3} = \dfrac1{29}[/tex]
Split up the region into washers of thickness [tex]\Delta y[/tex].
For [tex]-1\le y\le\frac1{29}[/tex], the inner and outer radii of each washer will be constant, with outer radius [tex]x=3[/tex] and inner radius [tex]x=2[/tex]. Each washer in this interval will contribute a total volume of
[tex]\pi (3^2 - 2^2) \Delta y = 5\pi\,\Delta y[/tex]
For [tex]\frac1{29} \le y \le \frac1{10}[/tex], the washers will have a varying outer radius of length
[tex]y=\dfrac1{2+x^3} \implies x = \sqrt[3]{\dfrac1y - 2}[/tex]
and inner radius [tex]x=2[/tex]. Their volumes are
[tex]\pi \left(\left(\sqrt[3]{\dfrac1y - 2}\right)^2 - 2^2\right) \, \Delta y = \pi \left(\left(\dfrac1y - 2\right)^{2/3} - 4\right) \, \Delta y[/tex]
Let [tex]\Delta y\to0[/tex]. Then as the number of washers goes to infinity, the total volume of the solid converges to the definite integral
[tex]\displaystyle 5\pi \int_{-1}^{1/29} dy + \pi \int_{1/29}^{1/10} \left(\left(\dfrac1y - 2\right)^{2/3} - 4\right) \, dy[/tex]
The first integral is trivial, but the second one requires hypergeometric functions to evaluate exactly. With a calculator, we find the approximate volume to be 0.117884.