kbac98
contestada

Let [tex]R[/tex] be the region bounded between the parabola [tex]y=4x-x^2[/tex] and the x-axis. Find [tex]m[/tex] so that the line [tex]y=mx[/tex] divides [tex]R[/tex] into two pieces of equal area.

Respuesta :

First, we observe that

[tex]4x-x^2 = x(4-x) = 0 \implies x=0 \text{ or } x = 4[/tex]

and

[tex]4x-x^2 = 4-(x-2)^2 \le 4[/tex]

so that [tex]R[/tex] is in the first quadrant. Any line [tex]y=mx[/tex] that slices this region into two pieces must then have a slope between [tex]m=0[/tex] and [tex]m=4[/tex] (which is the slope of the tangent line to the curve through the origin).

The parabola and line meet at the origin, and again when

[tex]4x - x^2 = mx \\\\ ~~~~ \implies x^2 + (m-4)x = x (x + m - 4) = 0 \\\\ ~~~~\implies x = 4-m[/tex]

with [tex]4x-x^2\ge mx[/tex] for [tex]0\le x\le4-m[/tex].

Now, the total area of [tex]R[/tex] is

[tex]\displaystyle \int_0^4 (4x-x^2) \, dx = \left(2x^2 - \frac{x^3}3\right)\bigg|_0^4 = \frac{32}3[/tex]

so that half the area is 16/3.

The area of the left piece (containing the origin) is

[tex]\displaystyle \int_0^{4-m} ((4x-x^2) - mx) \, dx = \left(\frac{4-m}2 x^2- \frac{x^3}3\right)\bigg|_0^{4-m} = \frac{(4-m)^3}6[/tex]

Solve for [tex]m[/tex].

[tex]\dfrac{(4-m)^3}6 = \dfrac{16}3[/tex]

[tex](4-m)^3 = 32[/tex]

[tex]4 - m = \sqrt[3]{32} = 2\sqrt[3]{4}[/tex]

[tex]\boxed{m = 4 - 2\sqrt[3]{4} \approx 0.825}[/tex]