Respuesta :
[tex]{ \qquad\qquad\huge\underline{{\sf Answer}}} [/tex]
Here we go ~
In first 40 km, it travels with speed of 30 kmph
So, time taken in this span is :
[tex]\qquad \sf \dashrightarrow \: \dfrac{40}{30} [/tex]
[tex]\qquad \sf \dashrightarrow \: \dfrac{4}{3} \: \:hours[/tex]
And let's assume that it travels with uniform speed of x kmph during next 40 km
Now, time taken in this span of time is :
[tex]\qquad \sf \dashrightarrow \: \dfrac{40}{x} \: \: kmph [/tex]
Now, we know the formula to find average velocity ~
[tex]\qquad \sf \dashrightarrow \: v_{avg} = \dfrac{total \: \: distance \: \: covered}{total \: \: time \: \: taken} [/tex]
[tex]\qquad \sf \dashrightarrow \: 40 = \dfrac{80}{ \frac{40}{30} + \frac{40}{x} } [/tex]
[tex]\qquad \sf \dashrightarrow \: \dfrac{40}{30} + \dfrac{4 0}{x} = \dfrac{80}{40} [/tex]
[tex]\qquad \sf \dashrightarrow \: 40 \bigg( \dfrac{1}{30} + \dfrac{1}{ {x}^{} } \bigg) = \dfrac{80}{40} [/tex]
[tex]\qquad \sf \dashrightarrow \: \dfrac{1}{30} + \dfrac{1}{ {x}^{} } = \dfrac{2}{40} [/tex]
[tex]\qquad \sf \dashrightarrow \: \dfrac{1}{x} = \dfrac{1}{20} - \dfrac{1}{30} [/tex]
[tex]\qquad \sf \dashrightarrow \: \dfrac{1}{x} = \dfrac{3 - 2}{60} [/tex]
[tex]\qquad \sf \dashrightarrow \: \dfrac{1}{x} = \dfrac{1}{60} [/tex]
[tex]\qquad \sf \dashrightarrow \: x = 60 \: \: kmph[/tex]
So, for next 40 km, he need to maintain average speed of 60 kmph, in order to keep an average of 40 kmph for the whole trip ~