Answer:
Trevor must score a 73.
We will create an equation that has four values (three knowns, one unknown) that will divide by 4 to find the average.
Our equation will look like this:
[tex]\displaystyle \frac{86+83+78+x}{4}=80[/tex]
First, combine all like terms.
[tex]\displaystyle \frac{247+x}{4}=80[/tex]
Then, divide the fraction.
[tex]\displaystyle \frac{247}{4} + \frac{x}{4} = 80[/tex]
Subtract 247/4 from both sides of the equation.
[tex]\displaystyle \frac{247}{4} - \frac{247}{4} + \frac{x}{4} = 80 - \frac{247}{4}[/tex]
[tex]\displaystyle \frac{x}{4} = \frac{73}{4}[/tex]
Then, multiply both sides of the equation by 4 to get rid of the denominator and isolate the variable.
[tex]4\times\displaystyle \frac{x}{4} = 4\times\frac{73}{4}[/tex]
[tex]x=73[/tex]
[tex]\boxed{\bold{x=73}}[/tex]