Respuesta :

[tex]\textit{internal division of a segment using a fraction}\\\\ A(\stackrel{x_1}{-3}~,~\stackrel{y_1}{-8})\qquad B(\stackrel{x_2}{10}~,~\stackrel{y_2}{5})~\hspace{8em} \frac{7}{10}\textit{ of the way from A to B} \\\\[-0.35em] ~\dotfill\\\\ (\stackrel{x_2}{10}-\stackrel{x_1}{(-3)}~~,~~ \stackrel{y_2}{5}-\stackrel{y_1}{(-8)})\qquad \implies \qquad \stackrel{\stackrel{\textit{component form of}}{\textit{segment AB}}}{\left( 13 ~~,~~ 13 \right)} \\\\[-0.35em] ~\dotfill[/tex]

[tex]\left( \stackrel{x_1}{-3}~~+~~\frac{7}{10}(13)~~,~~\stackrel{y_1}{-8}~~+~~\frac{7}{10}(13) \right)\implies \left(-3+\cfrac{91}{10}~~,~~-8+\cfrac{91}{10} \right) \\\\\\ \left( \cfrac{-30+91}{10}~~,~~\cfrac{-80+91}{10} \right)\implies \left(\cfrac{61}{10}~~,~~\cfrac{11}{10} \right)\implies \left(6\frac{1}{10} ~~,~~1\frac{1}{10} \right)[/tex]

ACCESS MORE