The airplane starts form rest, then accelerates by rate of [tex]3m/s^2[/tex] until it reaches 102m/s at the end of the runway. so we have:
[tex]Vo=0m/s\\Vf=102m/s\\a=3m/s^2\\\\[/tex]
From the equations of uniformly accelerated motion (since the airplane's acceleration is uniform) [tex]'Vf^2=Vo^2+2aS' \\[/tex] is compatible to find the minimum runway length (S).
[tex]Vf^2=Vo^2+2aS\\Vf^2-Vo^2=2aS\\S=Vf^2-Vo^2/2a\\[/tex]
[tex]S=((102m/s)^2-(0m/s)^2)/2m/s^2\\S=(10404m^2/s^2-0m^2/s^2)/2m/s^2\\S=(10404m^2/s^2)/2m/s^2\\S=5202m[/tex]