Respuesta :
Answer: 469762048
Step-by-step explanation:
1: 7*4^0=
7*1=7
2:7*4^1=
7*4=28
3: 7*4^(3-1)=
7*4^2=
7*16=112
14: 7*4^(14-1)=
7*4^13=469762048
Solution:
We are to find the 14th term in the G.P sequence: 7, 28, 112.........n
1st term (a)[tex]= 7[/tex]
Common ratio:[tex] \frac{28}{7} = 4[/tex]
Formula for finding the nth term of a G.P: [tex]tn = a {r}^{n - 1} [/tex]
Where: t = term, n = the given number of term, a = the 1st term, and r = the common ratio.
Replacing for the values of the variables in the above formula.
[tex]t14 = 7 \times {4}^{14 - 1} [/tex]
[tex]t14 = 7 \times {4}^{13} [/tex]
[tex]t14 = 7 \times 67108864[/tex]
[tex] t14 = 469762048[/tex]
Therefore: the 14th term = 469762048
I hope this helps.
Otras preguntas
