Respuesta :
Answer:
[tex]\text{f}(x)=4x^2-6e^x+8[/tex]
Step-by-step explanation:
Given:
- [tex]\text{f}\:'(x)=8x-6e^x[/tex]
- [tex]\text{f}(0)=2[/tex]
Fundamental Theorem of Calculus
[tex]\displaystyle \int \text{f}(x)\:\text{d}x=\text{F}(x)+\text{C} \iff \text{f}(x)=\dfrac{\text{d}}{\text{d}x}(\text{F}(x))[/tex]
If differentiating takes you from one function to another, then integrating the second function will take you back to the first with a constant of integration.
To find the function f(x), integrate f'(x) and use f(0) = 2 to find the value of the constant.
[tex]\begin{aligned}\displaystyle \int (8x-6e^x)\:\:\text{d}x & = \int 8x\:\:\text{d}x -\int 6e^x\:\:\text{d}x \\\\& =8 \int x\:\:\text{d}x -6\int e^x\:\:\text{d}x \\\\& = 8 \cdot \dfrac{1}{2}x^2-6e^x+\text{C}\\\\& = 4x^2-6e^x+\text{C}\end{aligned}[/tex]
To find the value of C, substitute x = 0 into the function and set it to 2:
[tex]\begin{aligned}\text{f}(0) & =2\\\implies 4(0)^2-6e^{0}+\text{C} & =2\\0-6+\text{C} & =2\\\text{C} & =8\end{aligned}[/tex]
Finally, substitute the found value of C into the equation:
[tex]\text{f}(x)=4x^2-6e^x+8[/tex]
Rules of Integration
[tex]\boxed{\begin{minipage}{5 cm}\underline{Terms multiplied by constants}\\\\$\displaystyle \int ax^n\:\text{d}x=a \int x^n \:\text{d}x$\end{minipage}}[/tex]
If the terms are multiplied by constants, take them outside the integral.
[tex]\boxed{\begin{minipage}{3.5 cm}\underline{Integrating $x^n$}\\\\$\displaystyle \int x^n\:\text{d}x=\dfrac{x^{n+1}}{n+1}+\text{C}$\end{minipage}}[/tex]
Increase the power by 1, then divide by the new power.
[tex]\boxed{\begin{minipage}{3.5 cm}\underline{Integration of $e^{x}$} \\\\$\displaystyle \int e^{x}\:\text{d}x=e^{x}+\text{C}$\\\\for $a\neq 0$\end{minipage}}[/tex]
Learn more about integration here:
https://brainly.com/question/27805589
https://brainly.com/question/28155016