Find the exact solution given that f^' (x)=8x-6e^x and that f(0)=2.
This means to integrate the above function and find the function f(x)?

Respuesta :

Answer:

[tex]\text{f}(x)=4x^2-6e^x+8[/tex]

Step-by-step explanation:

Given:

  • [tex]\text{f}\:'(x)=8x-6e^x[/tex]
  • [tex]\text{f}(0)=2[/tex]

Fundamental Theorem of Calculus

[tex]\displaystyle \int \text{f}(x)\:\text{d}x=\text{F}(x)+\text{C} \iff \text{f}(x)=\dfrac{\text{d}}{\text{d}x}(\text{F}(x))[/tex]

If differentiating takes you from one function to another, then integrating the second function will take you back to the first with a constant of integration.

To find the function f(x), integrate f'(x) and use f(0) = 2 to find the value of the constant.

[tex]\begin{aligned}\displaystyle \int (8x-6e^x)\:\:\text{d}x & = \int 8x\:\:\text{d}x -\int 6e^x\:\:\text{d}x \\\\& =8 \int x\:\:\text{d}x -6\int e^x\:\:\text{d}x \\\\& = 8 \cdot \dfrac{1}{2}x^2-6e^x+\text{C}\\\\& = 4x^2-6e^x+\text{C}\end{aligned}[/tex]

To find the value of C, substitute x = 0 into the function and set it to 2:

[tex]\begin{aligned}\text{f}(0) & =2\\\implies 4(0)^2-6e^{0}+\text{C} & =2\\0-6+\text{C} & =2\\\text{C} & =8\end{aligned}[/tex]

Finally, substitute the found value of C into the equation:

[tex]\text{f}(x)=4x^2-6e^x+8[/tex]

Rules of Integration

[tex]\boxed{\begin{minipage}{5 cm}\underline{Terms multiplied by constants}\\\\$\displaystyle \int ax^n\:\text{d}x=a \int x^n \:\text{d}x$\end{minipage}}[/tex]

If the terms are multiplied by constants, take them outside the integral.

[tex]\boxed{\begin{minipage}{3.5 cm}\underline{Integrating $x^n$}\\\\$\displaystyle \int x^n\:\text{d}x=\dfrac{x^{n+1}}{n+1}+\text{C}$\end{minipage}}[/tex]

Increase the power by 1, then divide by the new power.

[tex]\boxed{\begin{minipage}{3.5 cm}\underline{Integration of $e^{x}$} \\\\$\displaystyle \int e^{x}\:\text{d}x=e^{x}+\text{C}$\\\\for $a\neq 0$\end{minipage}}[/tex]

Learn more about integration here:

https://brainly.com/question/27805589

https://brainly.com/question/28155016

ACCESS MORE