Respuesta :
The answer is [tex]N_{C}=N_{z}=\frac{2}{3} N _{p m}[/tex]
Given, that Geor A and year x running at some speed (in rpm).
[tex]\text { So, } N_{A}=N_{x}=N \text { (in rpm) }[/tex]
Now
1st case - Let Geor A, B and C are in Mass.
So,
N T= Compton
for gears in mesh.
[tex]\text { So, } N_{B}=-N_{A}\left(\frac{T_{A}}{T_{B}}\right)\\=-N \times\left(\frac{20}{50}\right)=-\frac{2}{5} N[/tex]
[tex]N_{C}=-N_{B}\left(\frac{T_{B}}{T_{C}}\right)\\=-\left(-\frac{2}{5}\right)\left(\frac{50}{30}\right)=\frac{2}{3} N[/tex]
So,
[tex]N_{A}=N \\\quad N_{B}=-\frac{2}{5} N$\\N_{C}=\frac{2}{3} N$[/tex]
Case 2
Now consider gears x, y and z are in mesh together.
[tex]\begin{aligned}&N_{x}=N^{1} \\&N_{y}=-N_{x}\left(\frac{T_{x}}{T_{y}}\right)\end{aligned}[/tex]
[tex]\begin{aligned}&=-N\left(\frac{20}{25}\right)=-\frac{4}{5} N \\N_{z} &=-N_{y}\left(\frac{T_{y}}{T_{z}}\right)\end{aligned}[/tex]
[tex]=-\left(\frac{-4}{5} N\right)\left(\frac{25}{30}\right)\\=\frac{4}{5} N \times \frac{5}{6}=\frac{2}{3} N[/tex]
So,
[tex]$N_{x}=N \\\quad N_{y}=-\frac{4}{5} N \quad \\N_{z}=\frac{2}{3} N$[/tex]
[tex]\rightarrow[/tex] year C and year z will run with
some rpm, as,[tex]N_{C}=N_{z}=\frac{2}{3} N _{p m}[/tex]
What is gears ?
- A gear is a spinning circular machine element with cut teeth, or inserted teeth in the case of a cogwheel or gearwheel, that mesh with another toothed part to impart torque and speed. The basic concept underlying gear operation is identical to the basic principle behind lever operation.
- Gears are employed in mechanical devices to convey motion and torque between machine components. Gears can alter the direction of movement and/or increase the output speed or torque depending on the design and construction of the gear pair used.
To learn more about gear https://brainly.com/question/14455728
#SPJ9
![Ver imagen rafikiedu08](https://us-static.z-dn.net/files/db2/e75b74bcef56d2117852f2584191f128.jpg)
![Ver imagen rafikiedu08](https://us-static.z-dn.net/files/d04/3750c41ded8854f97ac86c9ad8c628cf.jpg)