Respuesta :

Answer:

[tex]16i\sqrt{2}[/tex]

Step-by-step explanation:

Given expression:

[tex]2\sqrt{-50}+\sqrt{-72}[/tex]

Rewrite -50 as (25 · -2)  and -72 as (36 · -2)

[tex]\implies 2\sqrt{25\cdot -2}+\sqrt{36 \cdot -2}[/tex]

[tex]\textsf{Apply radical rule} \quad \sqrt{ab}=\sqrt{a}\sqrt{b}:[/tex]

[tex]\implies 2\sqrt{25}\sqrt{-2}+\sqrt{36}\sqrt{-2}[/tex]

Rewrite 25 as 5² and 36 as 6²:

[tex]\implies 2\sqrt{5^2}\sqrt{-2}+\sqrt{6^2}\sqrt{-2}[/tex]

[tex]\textsf{Apply radical rule} \quad \sqrt{a^2}=a, \quad a \geq 0[/tex]

[tex]\implies 2 \cdot 5\sqrt{-2}+6\sqrt{-2}[/tex]

Simplify:

[tex]\implies 10\sqrt{-2}+6\sqrt{-2}[/tex]

[tex]\implies 16\sqrt{-2}[/tex]

[tex]\textsf{Apply radical rule} \quad \sqrt{-a}=\sqrt{-1}\sqrt{a}:[/tex]

[tex]\implies 16\sqrt{-1}\sqrt{2}[/tex]

[tex]\textsf{Apply imaginary number rule}\quad \sqrt{-1}=i[/tex]

[tex]\implies 16i\sqrt{2}[/tex]

Learn more about radical rules here:

https://brainly.com/question/28106222

ACCESS MORE