Respuesta :

Answer:

1232 cm³

Step-by-step explanation:

For a cone, the total surface area is

A = πrL + πr²

where L = slant height, r = radius

704 cm² = (25 cm)πr +  πr²

πr² + 78.539816r - 704 = 0

Use the quadratic formula to solve for r.

[tex] r = \dfrac{-b + \pm\sqrt{b^2 - 4ac}}{2a} [/tex]

[tex] r = \dfrac{-78.539816 + \pm\sqrt{(78.539816)^2 - 4(π)(-704)}}{2π} [/tex]

r = 7.00 or r = -32.00

We discard the negative value for the radius, and we keep r = 7.

Now we find the volume of a cone with r = 7 cm, L = 25

First, we find the height.

a² + b² = c²

(7)² + b² = (25)²

b = 24

height = 24 cm

V = (1/3)πr²h

V = (1/3)(π)(7 cm)²(24 cm)

V = 1232 cm³

ACCESS MORE