Respuesta :

1. According to the plots, the curves intersect when [tex]x=90^\circ[/tex] and [tex]x=360^\circ[/tex].

We can confirm this algebraically.

[tex]\sin(x) + 2 = -\cos(x) + 3[/tex]

[tex]\sin(x) + \cos(x) = 1[/tex]

[tex]\sqrt2 \sin\left(x + 45^\circ\right) = 1[/tex]

[tex]\sin\left(x + 45^\circ\right) = \dfrac1{\sqrt2}[/tex]

[tex]x + 45^\circ = \sin^{-1}\left(\dfrac1{\sqrt2}\right) + 360^\circ n \text{ or } x + 45^\circ = 180^\circ - \sin^{-1}\left(\dfrac1{\sqrt2}\right) + 360^\circ n[/tex]

(where [tex]n[/tex] is an integer)

[tex]x + 45^\circ = 45^\circ + 360^\circ n \text{ or } x + 45^\circ = 135^\circ + 360^\circ n[/tex]

[tex]x = 360^\circ n \text{ or } x = 90^\circ + 360^\circ n[/tex]

We get the two solutions we found in the interval [0°, 360°] with [tex]n=1[/tex] in the first case, and [tex]n=0[/tex] in the second case.

2. We have [tex]\sin(x)=0[/tex] when [tex]x \in \{0^\circ, \pm 180^\circ, \pm360^\circ, \ldots\}[/tex]. For the given plot domain [0°, 360°], this happens when [tex]180^\circ < x < 360^\circ[/tex].

3. The domain for both equations is all real numbers in general, but considering the given plot, you could argue the domains would be [0°, 360°].

[tex]\sin(x)[/tex] is bounded between -1 and 1, so [tex]\sin(x) + 2[/tex] is bounded between -1 + 2 = 1 and 1 + 2 = 3, and its range is [1, 3].

Likewise, [tex]-\cos(x)[/tex] is bounded between -1 and 1, so that [tex]-\cos(x)+3[/tex] is bounded between -1 + 3 = 2 and 1 + 3 = 4, so its range would be [2, 4].