Respuesta :
The answer is slope of the tangent tothe given polar curve [tex]$r=\cos (2 \theta)$[/tex] at [tex]$\theta=\frac{\pi}{4}$[/tex] is [tex]$m=1$[/tex]
Given [tex]$r=\cos (2 \theta)$[/tex]
As we know that the slope m of the polar curve[tex]$r=f(\theta)$[/tex] at a point P is given by
[tex]$m=\left.\frac{\mathrm{d} y}{\mathrm{~d} x}\right|_{\theta=\theta_{0}}=\left.\frac{f^{\prime}(\theta) \sin (\theta)+f(\theta) \cos (\theta)}{f^{\prime}(\theta) \cos (\theta)-f(\theta) \sin (\theta)}\right|_{\theta=\theta_{0}}$[/tex]..........(1)
Here [tex]$f(\theta)=\cos (2 \theta) \quad$[/tex] and [tex]$\quad \theta_{0}=\frac{\pi}{4}$[/tex]
[tex]$f^{\prime}(\theta)=-2 \sin (2 \theta) \quad$[/tex] [ by using chain rule]
Substituting in eq. (1) we get
[tex]m=\left.\frac{\mathrm{d} y}{\mathrm{~d} x}\right|_{\theta=\frac{\pi}{4}}=\left.\frac{-2 \sin (2 \theta) \sin (\theta)+\cos (2 \theta) \cos (\theta)}{-2 \sin (2 \theta) \cos (\theta)-\cos (2 \theta) \sin (\theta)}\right|_{\theta=\frac{\pi}{4}}[/tex]
[tex]m=\left.\frac{\mathrm{d} y}{\mathrm{~d} x}\right|_{\theta=\frac{\pi}{4}}=\frac{-2 \sin \left(2 \frac{\pi}{4}\right) \sin \left(\frac{\pi}{4}\right)+\cos \left(2 \frac{\pi}{4}\right) \cos \left(\frac{\pi}{4}\right)}{-2 \sin \left(2 \frac{\pi}{4}\right) \cos \left(\frac{\pi}{4}\right)-\cos \left(2 \frac{\pi}{4}\right) \sin \left(\frac{\pi}{4}\right)}[/tex]
[tex]m=\left.\frac{\mathrm{d} y}{\mathrm{~d} x}\right|_{\theta=\frac{\pi}{4}}=\frac{-2 \sin \left(\frac{\pi}{2}\right) \sin \left(\frac{\pi}{4}\right)+\cos \left(\frac{\pi}{2}\right) \cos \left(\frac{\pi}{4}\right)}{-2 \sin \left(\frac{\pi}{2}\right) \cos \left(\frac{\pi}{4}\right)-\cos \left(\frac{\pi}{2}\right) \sin \left(\frac{\pi}{4}\right)}[/tex]
[tex]\begin{aligned}&m=\left.\frac{\mathrm{d} y}{\mathrm{~d} x}\right|_{\theta=\frac{\pi}{4}}=\frac{-2 \frac{1}{\sqrt{2}}+0}{-2 \frac{1}{\sqrt{2}}-0} \\&m=\left.\frac{\mathrm{d} y}{\mathrm{~d} x}\right|_{\theta=\frac{\pi}{4}}=\frac{-\frac{2}{\sqrt{2}}}{-\frac{2}{\sqrt{2}}} \\&m=\left.\frac{\mathrm{d} y}{\mathrm{~d} x}\right|_{\theta=\frac{\pi}{4}}=1\end{aligned}[/tex]
Hence slope of the tangent to the given polar curve [tex]$r=\cos (2 \theta)$[/tex] at [tex]$\theta=\frac{\pi}{4}$[/tex] is [tex]$m=1$[/tex]
What is chain rule ?
- The chain rule is a method for calculating the derivative of composite functions, which are functions created by joining one or more functions.
- The chain rule is used to differentiate a function that contains another function. The product rule is used to distinguish a function that is the product of two functions. The quotient rule is used to distinguish a function that is the sum of two functions.
To learn more about chain rule visit:
https://brainly.com/question/25854839
#SPJ4