Respuesta :

a. Note that [tex]f(x)=x^ne^{-2x}[/tex] is continuous for all [tex]x[/tex]. If [tex]f(x)[/tex] attains a maximum at [tex]x=3[/tex], then [tex]f'(3) = 0[/tex]. Compute the derivative of [tex]f[/tex].

[tex]f'(x) = nx^{n-1} e^{-2x} - 2x^n e^{-2x}[/tex]

Evaluate this at [tex]x=3[/tex] and solve for [tex]n[/tex].

[tex]n\cdot3^{n-1} e^{-6} - 2\cdot3^n e^{-6} = 0[/tex]

[tex]n\cdot3^{n-1} = 2\cdot3^n[/tex]

[tex]\dfrac n2 = \dfrac{3^n}{3^{n-1}}[/tex]

[tex]\dfrac n2 = 3 \implies \boxed{n=6}[/tex]

To ensure that a maximum is reached for this value of [tex]n[/tex], we need to check the sign of the second derivative at this critical point.

[tex]f(x) = x^6 e^{-2x} \\\\ \implies f'(x) = 6x^5 e^{-2x} - 2x^6 e^{-2x} \\\\ \implies f''(x) = 30x^4 e^{-2x} - 24x^5 e^{-2x} + 4x^6 e^{-2x} \\\\ \implies f''(3) = -\dfrac{486}{e^6} < 0[/tex]

The second derivative at [tex]x=3[/tex] is negative, which indicate the function is concave downward, which in turn means that [tex]f(3)[/tex] is indeed a (local) maximum.

b. When [tex]n=4[/tex], we have derivatives

[tex]f(x) = x^4 e^{-2x} \\\\ \implies f'(x) = 4x^3 e^{-2x} - 2x^4 e^{-2x} \\\\ \implies f''(x) = 12x^2 e^{-2x} - 16x^3e^{-2x} + 4x^4e^{-2x}[/tex]

Inflection points can occur where the second derivative vanishes.

[tex]12x^2 e^{-2x} - 16x^3 e^{-2x} + 4x^4 e^{-2x} = 0[/tex]

[tex]12x^2 - 16x^3 + 4x^4 = 0[/tex]

[tex]4x^2 (3 - 4x + x^2) = 0[/tex]

[tex]4x^2 (x - 3) (x - 1) = 0[/tex]

Then we have three possible inflection points when [tex]x=0[/tex], [tex]x=1[/tex], or [tex]x=3[/tex].

To decide which are actually inflection points, check the sign of [tex]f''[/tex] in each of the intervals [tex](-\infty,0)[/tex], [tex](0, 1)[/tex], [tex](1, 3)[/tex], and [tex](3,\infty)[/tex]. It's enough to check the sign of any test value of [tex]x[/tex] from each interval.

[tex]x\in(-\infty,0) \implies x = -1 \implies f''(-1) = 32e^2 > 0[/tex]

[tex]x\in(0,1) \implies x = \dfrac12 \implies f''\left(\dfrac12\right) = \dfrac5{43} > 0[/tex]

[tex]x\in(1,3) \implies x = 2 \implies f''(2) = -\dfrac{16}{e^4} < 0[/tex]

[tex]x\in(3,\infty) \implies x = 4 \implies f''(4) = \dfrac{192}{e^8} > 0[/tex]

The sign of [tex]f''[/tex] changes to either side of [tex]x=1[/tex] and [tex]x=3[/tex], but not [tex]x=0[/tex]. This means only [tex]\boxed{x=1}[/tex] and [tex]\boxed{x=3}[/tex] are inflection points.

caylus

Answer:

Hello,

Step-by-step explanation:

A):

Max if x=3

[tex]y=x^n*exp(-2x),\ n > 2\\\\f'(x)=n*x^{n-1}*exp(-2x)+x^n*exp(-2x)*(-2)\\=exp(-2x)*x^{n-1}*(n-2x)\\f'(x)=0\ \Longrightarrow\ x=\dfrac{n}{2} \since\ x=3\ \Longrightarrow\ n=6\\extremum\ is \ for\ n=6\\f"(x)=n(n-1)*x^{n-2}*exp(-2x)+\\n*x^{n-1}*exp(-2x)*(-2)\\+(-2)*n*x^{n-1}*exp(-2x}+4x^n*exp(-2x)\\\\...\\f"(x)=x^{n-2}*exp(-2x)*(4x^2-4*6*x+6*5)\\\\f"(x)=x^{n-2}*exp(-2x)*(x-\dfrac{6-\sqrt{6} }{2} )*(x-\dfrac{6+\sqrt{6} }{2} )\\\\f"(3)=3^4*exp(-6)*(4*3^2-4*6*3+6*5) =-1,2048... < 0\\So\ a\ maximum.\\[/tex]

B)

for n=4:

[tex]f"(x)=x^2*exp(-2x)*(4x^2-16x+12)\\=4*x^2*exp(-2x)*x-3)(x-1)\\\\3\ inflexion\ points: \ x=0,\ x=1,\ x=3\\[/tex]

Ver imagen caylus
ACCESS MORE