Respuesta :

The sphere will have an equation of the form

[tex](x - a)^2 + (y - b)^2 + (z - c)^2 = r^2[/tex]

so that its center is at the point [tex](a,b,c)[/tex] and its radius is [tex]r[/tex].

You would solve for either half of the hemisphere,

[tex]z = \pm\sqrt{r^2 - (x - a)^2 - (y - b)^2}[/tex]

and denote this by [tex]z=g(x,y)[/tex]. Then the surface integral of [tex]f(x,y)[/tex] over either half of the sphere (call them [tex]S^+[/tex] and [tex]S^-[/tex] for upper and lower hemispheres, respectively) would be

[tex]\displaystyle \iint_{S^+\cup S^-} f(x,y) \, ds \\\\ ~~~~ = \iint_{S^+} f(x,y) \sqrt{1 + \left(\frac{\partial g}{\partial x}\right)^2 + \left(\frac{\partial g}{\partial y}\right)^2} \, dx \, dy \\\\ ~~~~~~~~+ \iint_{S^-} f(x,y) \sqrt{1 + \left(\frac{\partial g}{\partial x}\right)^2 + \left(\frac{\partial g}{\partial y}\right)^2} \, dx \, dy[/tex]