Respuesta :
[tex]\boxed{\bold{\green{\frac{59+8x}{8+x}}}}[/tex]
Answer:
Solution Given:
The expression of the mean = [tex]\frac{sum \:\:of \:\:price*frequency} {sum\:\: of \:\:frequency}[/tex]
=[tex] \frac{4.10*3+4.85*2+8*x+12*1+12.5*2}{3+2+x+1+2}[/tex]
=[tex]\boxed{\bold{\green{\frac{59+8x}{8+x}}}}[/tex] is a required expression.
Answer:
[tex]\overline{x}=\dfrac{59+8x}{8+x}[/tex]
Step-by-step explanation:
Mean: The sum of all data values divided by the total number of data values.
Create a frequency table with the given information.
Label Price as "x" and Frequency as "f".
Add an "fx" column and enter the values of f multiplied by x.
Add a "Total" row and enter the total frequency and total fx.
[tex]\begin{array}{|c|c|c|}\cline{1-3}\sf Price & \sf Frequency &\\x & f & fx\\\cline{1-3} 4.10 & 3 & 12.3 \\\cline{1-3} 4.85 & 2 & 9.7 \\\cline{1-3} 8.00 & x & 8x \\\cline{1-3} 12.00 & 1 & 12 \\\cline{1-3} 12.50 & 2 & 25 \\\cline{1-3} \sf Total & 8+x & 59+8x\\\cline{1-3}\end{array}[/tex]
The formula for the mean is:
[tex]\boxed{\text{Mean}= \overline{x} = \dfrac{\displaystyle \sum fx}{\displaystyle \sum f}}[/tex]
where:
- x = data value
- f = frequency of each x
The Sigma sign means "sum".
Substitute the totals into the formula to create an expression for the mean:
[tex]\implies \overline{x}=\dfrac{59+8x}{8+x}[/tex]