Respuesta :

Answer:

• [tex]x[/tex] = 42°

• [tex]y[/tex] = 74°  

• [tex]z[/tex] = 114°

Step-by-step explanation:

To solve these problems, we have to use the triangle sum theorem, which states that "the sum of all the interior angles of a triangle is 180°".

A)

[tex]x[/tex] + 90° + 48° = 180°

⇒ [tex]x[/tex]  + 138° = 180°

⇒ [tex]x[/tex] + 138° - 138° = 180° - 138°      [Subtracting 138° from both sides]

⇒ [tex]x[/tex] = 42°

B)

The triangle in this question is an isosceles triangle, therefore the two angles at the base of the triangle are equal and have measures of [tex]y[/tex].

[tex]y[/tex] + [tex]y[/tex] + 32° = 180°

⇒ 2[tex]y[/tex] + 32° = 180°

⇒ 2[tex]y[/tex] = 180° - 32°

⇒ 2[tex]y[/tex] = 148°

⇒ [tex]\frac{2}{2} y[/tex] = [tex]\frac{148^{\circ}}{2}[/tex]             [Dividing both sides by 2]

⇒ [tex]y[/tex] = 74°                    

C)

[tex]z[/tex] + 28° + 38° = 180°

⇒ [tex]z[/tex] + 66 = 180°

⇒ [tex]z[/tex]  = 180° - 66°

⇒ [tex]z[/tex] = 114°

ACCESS MORE