In in xy-plane, choose the +x-axis as east and the +y-axis as north
Then we can use the sum of the x-components and y-components to find the magnitude (using pythagoras) and direction (arctan)
sum of x-components:
[tex]R_x=15\cos(30^{\circ})+20\cos(37^{\circ})+25\cos(45^{\circ})=46.64 \ m[/tex]
sum of y-components:
[tex]R_y=15\sin(30^{\circ})+20\sin(37^{\circ})+25\sin(45^{\circ})=37.21m[/tex]
[tex]\textbf{Magnitude of resultant: } \sqrt{R_x^2+R_y^2} = 60m[/tex]
[tex]\textbf{Direction of resultant: }{\tan^{-1}{\frac{R_y}{R_x}}= 39^{\circ}[/tex] north of east