Respuesta :

In Cartesian coordinates, the region (call it [tex]R[/tex]) is the set

[tex]R = \left\{(x,y,z) ~:~ x\ge0 \text{ and } y\ge0 \text{ and } 2 \le z \le 4-x^2-y^2\right\}[/tex]

In the plane [tex]z=2[/tex], we have

[tex]2 = 4 - x^2 - y^2 \implies x^2 + y^2 = 2 = \left(\sqrt2\right)^2[/tex]

which is a circle with radius [tex]\sqrt2[/tex]. Then we can better describe the solid by

[tex]R = \left\{(x,y,z) ~:~ 0 \le x \le \sqrt2 \text{ and } 0 \le y \le \sqrt{2 - x^2} \text{ and } 2 \le z \le 4 - x^2 - y^2 \right\}[/tex]

so that the volume is

[tex]\displaystyle \iiint_R dV = \int_0^{\sqrt2} \int_0^{\sqrt{2-x^2}} \int_2^{4-x^2-y^2} dz \, dy \, dx[/tex]

While doable, it's easier to compute the volume in cylindrical coordinates.

[tex]\begin{cases} x = r \cos(\theta) \\ y = r\sin(\theta) \\ z = \zeta \end{cases} \implies \begin{cases}x^2 + y^2 = r^2 \\ dV = r\,dr\,d\theta\,d\zeta\end{cases}[/tex]

Then we can describe [tex]R[/tex] in cylindrical coordinates by

[tex]R = \left\{(r,\theta,\zeta) ~:~ 0 \le r \le \sqrt2 \text{ and } 0 \le \theta \le\dfrac\pi2 \text{ and } 2 \le \zeta \le 4 - r^2\right\}[/tex]

so that the volume is

[tex]\displaystyle \iiint_R dV = \int_0^{\pi/2} \int_0^{\sqrt2} \int_2^{4-r^2} r \, d\zeta \, dr \, d\theta \\\\ ~~~~~~~~ = \frac\pi2 \int_0^{\sqrt2} \int_2^{4-r^2} r \, d\zeta\,dr \\\\ ~~~~~~~~ = \frac\pi2 \int_0^{\sqrt2} r((4 - r^2) - 2) \, dr \\\\ ~~~~~~~~ = \frac\pi2 \int_0^{\sqrt2} (2r-r^3) \, dr \\\\ ~~~~~~~~ = \frac\pi2 \left(\left(\sqrt2\right)^2 - \frac{\left(\sqrt2\right)^4}4\right) = \boxed{\frac\pi2}[/tex]

ACCESS MORE