Respuesta :
Answer:
Approximately [tex]2.03 \times 10^{7}\; {\rm m}[/tex].
Explanation:
Assume that the radius of this orbit is [tex]r[/tex].
Let [tex]m[/tex] denote the mass of this satellite and let [tex]M[/tex] denote the mass of the Earth. At a distance of [tex]r[/tex] from the center of the earth, the magnitude of the gravitational attraction on this satellite would be [tex]G\, m\, M / (r^{2})[/tex].
The question implies that the gravitational pull from the earth is the only significant force on this satellite. Hence, the net force on this satellite would be also [tex]G\, m\, M / (r^{2})[/tex].
The acceleration of this satellite would thus be [tex]a = (\text{net force}) / (\text{mass}) = G\, M / (r^{2})[/tex].
Let [tex]\omega[/tex] denote the angular velocity of this satellite. Since this satellite in in a circular motion, the acceleration on this satellite would need to satisfy [tex]a = \omega^{2} \, r[/tex].
In other words:
[tex]\begin{aligned} \frac{G\, M}{r^{2}} = a = \omega^{2} \, r \end{aligned}[/tex].
[tex]\begin{aligned} r &= \left(\frac{G\, M}{\omega^{2}}\right)^{1/3}\end{aligned}[/tex].
The question asks for a rotation of [tex]3\times (2\, \pi) = 6\, \pi\; {\text{rad}}[/tex] within a day, which is [tex]24 \times 3600\; {\rm s}[/tex]. The angular velocity of this satellite should be:
[tex]\begin{aligned}\omega = \frac{6\, \pi}{24 \times 3600\; {\rm s}} \end{aligned}[/tex].
Substitute this value into the expression for [tex]r[/tex] and evaluate:
[tex]\begin{aligned} r &= \left(\frac{G\, M}{\omega^{2}}\right)^{1/3} \\ &= \left(\frac{(6.67 \times 10^{-11}\; {\rm N \cdot m^{2} \cdot kg^{-2}}) \times (5.97 \times 10^{24}\; {\rm kg})}{((6\, \pi) / (24 \times 3600\; {\rm s}))^{2}}\right)^{1/3} \\ &\approx 2.03 \times 10^{7}\; {\rm m}\end{aligned}[/tex].
(Note that [tex]1\; {\rm N} = 1\; {\rm kg \cdot m \cdot s^{-2}}[/tex].)