Since [tex]a,b,c[/tex] are in geometric progression, if [tex]r[/tex] is the common ratio between consecutive terms, then
[tex]a=a[/tex]
[tex]b = ar[/tex]
[tex]c=ar^2[/tex]
Since [tex]a,b,c[/tex] are also in arithmetic progression, if [tex]d[/tex] is the common difference between consecutive terms, then
[tex]a = a[/tex]
[tex]b = a + d \implies d = b-a[/tex]
[tex]c = b + d = a + 2d \implies c = a + 2(b-a) = 2b-a[/tex]
Given that [tex]abc=27[/tex], we have
[tex]abc = a\cdot ar\cdot ar^2 = (ar)^3 = 27 \implies ar = 3 \implies a = \dfrac3r[/tex]
[tex]b = \dfrac3r \cdot r = 3[/tex]
[tex]c = \dfrac3r \cdot r^2 = 3r[/tex]
It follows that
[tex]c = 2b-a \iff 3r = 6 - \dfrac3r[/tex]
Solve for [tex]r[/tex].
[tex]3r - 6 + \dfrac3r = 0[/tex]
[tex]3r^2 - 6r + 3 = 0[/tex]
[tex]r^2 - 2r + 1 = 0[/tex]
[tex](r-1)^2 = 0[/tex]
[tex]\implies r=1 \implies a=b=c=3[/tex]
so the only possible sequence is {3, 3, 3, …}.