Respuesta :

Answer: [tex]160^{\circ}[/tex]

Step-by-step explanation:

By the exterior angle theorem,

[tex]4x-14+5x-182=5x-100\\\\9x-196=5x-100\\\\4x=96\\\\x=24\\\\\implies m\angle BCD=20^{\circ}\\\\\implies m\angle BCA=160^{\circ}[/tex]

[tex] \qquad \qquad \bf \huge\star \: \: \large{ \underline{Answer} } \huge \: \: \star[/tex]

  • Angle BCA = 160°

[tex]\textsf{ \underline{\underline{Steps to solve the problem} }:}[/tex]

By Exterior angle property :

[tex]\qquad❖ \: \sf \:4x - 114 + 5x - 182 = 5x - 100[/tex]

[tex]\qquad❖ \: \sf \:9x -29 6 = 5x - 100[/tex]

[tex]\qquad❖ \: \sf \:9x - 5x = - 100 + 296[/tex]

[tex]\qquad❖ \: \sf \:4x = 96[/tex]

[tex]\qquad❖ \: \sf \:x = 24 \degree[/tex]

Next, Angle BCA = 180° - Angle BCD

( linear pair )

[ let angle BCA = y ]

[tex]\qquad❖ \: \sf \:y = 180 - (5x- 100)[/tex]

[tex]\qquad❖ \: \sf \:y = 180 - (5(24) - 100)[/tex]

[tex]\qquad❖ \: \sf \:y = 180 - (120 - 100)[/tex]

[tex]\qquad❖ \: \sf \:y = 180 - 20[/tex]

[tex]\qquad❖ \: \sf \:y = 160 \degree[/tex]

[tex] \qquad \large \sf {Conclusion} : [/tex]

  • Angle BCA = 160°
ACCESS MORE
EDU ACCESS
Universidad de Mexico