Benjamin is correct about the diameter being perpendicular to each other and the points connected around the circle.
The steps involved in inscribing a square in a circle include;
Alicia deductions were;
Draws two diameters and connects the points where the diameters intersect the circle, in order, around the circle
Benjamin's deductions;
The diameters must be perpendicular to each other. Then connect the points, in order, around the circle
Caleb's deduction;
No need to draw the second diameter. A triangle when inscribed in a semicircle is a right triangle, forms semicircles, one in each semicircle. Together the two triangles will make a square.
It can be concluded from their different postulations that Benjamin is correct because the diameter must be perpendicular to each other and the points connected around the circle to form a square.
Thus, Benjamin is correct about the diameter being perpendicular to each other and the points connected around the circle.
Learn more about an inscribed square here:
https://brainly.com/question/2458205
#SPJ1